A new splitting H-Galerkin mixed method for pseudo-hyperbolic equations
نویسندگان
چکیده
A new numerical scheme based on the H-Galerkin mixed finite element method for a class of second-order pseudohyperbolic equations is constructed. The proposed procedures can be split into three independent differential sub-schemes and does not need to solve a coupled system of equations. Optimal error estimates are derived for both semidiscrete and fully discrete schemes for problems in one space dimension. And the proposed method dose not requires the LBB consistency condition. Finally, some numerical results are provided to illustrate the efficacy of our method.. Keywords—Pseudo-hyperbolic equations, Splitting system, HGalerkin mixed method, Error estimates.
منابع مشابه
Nonconforming H-Galerkin Mixed Finite Element Method for Pseudo-Hyperbolic Equations
Based on H-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approximate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresponding optimal order error estimate is derived by the interpolation technique instead of the generalized elliptic projection which is necessary for classical error estimates of fini...
متن کاملAn operator splitting based stochastic Galerkin method for the one-dimensional compressible Euler equations with uncertainty
We introduce an operator splitting based stochastic Galerkin method for the one-dimensional compressible Euler equations with random inputs. The method uses a generalized polynomial chaos approximation in the stochastic Galerkin framework (referred to as the gPC-SG method). It is well-known that such approximations for nonlinear system of hyperbolic conservation laws do not necessarily yield gl...
متن کاملA well-balanced operator splitting based stochastic Galerkin method for the one-dimensional Saint-Venant system with uncertainty
We introduce an operating splitting based stochastic Galerkin method for the SaintVenant system of shallow water equations with random inputs. The method uses a generalized polynomial chaos approximation in the stochastic Galerkin framework (referred to as the gPC-SG method). It is well-known that such approximations for nonlinear hyperbolic systems do not necessarily yield globally hyperbolic ...
متن کاملWavelet-galerkin Discretization of Hyperbolic Equations
The relative merits of the wavelet-Galerkin solution of hyperbolic partial diieren-tial equations, typical of geophysical problems, are quantitatively and qualitatively compared to traditional nite diierence and Fourier-pseudo-spectral methods. The wavelet-Galerkin solution presented here is found to be a viable alternative to the two conventional techniques.
متن کاملHigh order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows
In this paper we present an efficient discretization method for the solution of the unsteady incompressible Navier-Stokes equations based on a high order (Hybrid) Discontinuous Galerkin formulation. The crucial component for the efficiency of the discretization method is the disctinction between stiff linear parts and less stiff non-linear parts with respect to their temporal and spatial treatm...
متن کامل